【 V媽碎碎唸 】我只是把困在石頭裡的大衛釋放出來了
以前剛開始進體制內小學當老師、自己還沒有小孩的時候,遇上學習態度不佳、生活自理能力很差的學生,總會覺得為什麼在家的時候那麼長,家長怎麼沒有好好教?有一次發現小五學生不會綁垃圾袋、丟垃圾時仙女散花滿天飛,整個大傻眼,當天給孩子的回家作業就是學習倒垃圾。以前總覺得,孩子就是家庭教育百分百的照妖鏡,孩子在學校如何地展現可以說就是家長的成績單,而在學校,就是調整人際關係與社交領域的範圍、以及智育上的學習。以上,是我在還沒有生孩子前的想法......
我有兩個孩子,家庭教養方式是相同的、我和先生在理念上大致上也是一致的,但孩子們在本質上、個性上、學習方式上、言語理解上.....有很大很大的不同!極大的不同!也因此,我開始打從心底堅信每個生命都是獨一無二的遇見,即使在同一家庭,教養方式不偏倚,每個生命與天俱來的特質、吸收到的內容就是那麼的獨特與不同。以上,是我生了兩個孩子以後的想法......
在學校裡有些生獨子或獨女的同事,偶爾會唸一下學生「搞不懂這爸媽怎麼教的」,我會無奈的笑了一下、尷尬的說:「相信我,你生一個的時候你會以為你可以像上帝一樣,完全把一個生命個體形塑出來,你會以為所有學生都是這樣被家庭完全影響長大的;但你生兩個甚至更多以後,你會發現每個生命都有自己的樣子和藍圖,我們最重要的任務是要負責守衛小苗、適時修剪、看情況澆點水施點肥,看看這土壤適不適合他,偶爾對他的夢想煽風點火一下,當個稱職園丁!相信我,這些小孩的爸媽也搞不懂他們怎麼教出這些小孩的?!」
正男從小就是一個偏理工的直男,言語發展很慢、五歲還很臭奶呆,但可以感覺他邏輯數理、語言規則學習等等非常清楚有條理,也可以感受到他對理工機械的興趣。大約在四五歲時,就很主動想學認字,當老師的我清楚地知到這個年紀過早不能教,且我跟爸爸都忙,小小年紀的正男看到爸媽在智育上都不理他,就開始有憂患意識,走在路上拼命的口齒不清的問:「把拔,那個怎麼唸!」「馬麻,這個怎麼唸!」雖然我們還是避免讓他過早接觸知識,但孩子主動問,你總不能視若無睹,只好不主動、他問一個我們說一個的應付下去,所以就這樣,在正男大班時,走在路上招牌的字,七成都可以唸出來。記得在他小四時,我在檢查他的數學應用題學習單作業,一整面的應用題只有答案、沒有運算過程,我以為他抄同學的答案,於是一題一題問他怎麼想的,才知道他在腦袋瓜裡已清楚的跑過所有流程、他只是把答案寫出來而已。因為有此發現,我開始需要他跟我講解,當時我花很多時間陪伴他「努力表達出腦袋的流程」,這個歷程對他來說很艱辛,但對正男來說很需要練習溝通。 記得當時很多同事總以為我教他很多,其實他太敏銳、會推敲,因此他是「主動吸收」很多、而不是「被教」很多。當時身為他的阿母實在有苦難言,不過沒關係,幸好........有阿妮!
阿妮從小就是個偏圖像思考、情感豐富的夢幻女孩,言語發展較快,且可以感覺她在藝術方面、言語表達部分很有她自己的特質(老粉絲們應該都有看過阿妮畫的L夾吧)。相較於哥哥在智育上的清楚認知,妮妮則是完全相反的展現,在認字上很無所謂,多一撇少一撇都可以,小二時大字不識幾個,數學減法運算時堅持不借位,她的理由是,「沒有錢就不要花啊!不用跟別人借啦!」就是這樣的一個小孩,不只在認字部分要用許多的象形圖像來幫助記憶,在數學解題部分也想像力大開!例如講約分聽不懂、講數字減肥才開心聽懂; 小數點乘法一直搞不懂點點要放哪裡,跟她畫出小不點精靈才開始開心算數學....太多太多這有趣的歷程,讓同事們知道,我們在家其實完全沒有提早超前部署教小孩抽象知識,而是每個生命有他自己的發展速度與藍圖規劃。我們在旁邊做的,真的就是對每個生命的樣貌保持有興趣、開放、好奇的心,在一旁看著守護著、陪伴著支持著,如此而已。
一開始會以為孩子像泥塑般會被爸媽、被老師好好塑形出來
其實...
每塊土的質地、天使製作土初時就設定好的生命藍圖會大大影響形塑樣子
就像,
米開朗基羅說:我只是把困在石頭裡的大衛釋放出來了
身為一個日夜守護生命的園丁
很榮耀能與這些生命相遇!
----------------------
感恩蛋殼上裂縫的存在,因為有裂縫,光才能走進來~歡迎分享、留言互動喔!大家願意來看來留言來給讚就是對V媽最大的鼓勵~
---------------------
🔸V媽小學不再唉唉叫線上講座火熱報名中
https://page.cashier.ecpay.com.tw/forms/6Y3
🔸V媽線上讀書會:療癒我們的孩子火熱報名中
https://page.cashier.ecpay.com.tw/forms/7b3
🍎 放學後放電好物,彎板、慢慢刷現貨搶購中
https://vmashopping.cashier.ecpay.com.tw/
🔸V媽教室line群組,講座團購不漏接:https://line.me/R/ti/p/%40uwr7373l
🔸V媽教室Podcast:https://reurl.cc/Y1jkVx
同時也有6部Youtube影片,追蹤數超過0的網紅胡毓棠股海淘金,也在其Youtube影片中提到,【重點個股】 : 康那香(9919)、恆大(1325)、熱映(3373)、高端疫苗(6547)、國光生(4142)、橘子(6180)、聯茂(6213)、台光電(2383)、群光(2385)、晶電(2448)、億光(2393)、久元(6261)、旺矽(6223)、鴻海(2317)、力成(6239)、安...
r運算子 在 動區動趨 BlockTempo - 由社群而生的區塊鏈媒體 - Media for Blockchain Facebook 的最佳解答
#Metaverse #元宇宙 #歷史到未來
【「虛擬世界」歷史到未來:電力革命、移動網路,與 Metaverse 理論框架】
🆕NFT 的出圈程度,遠超想像,單價動輒幾十萬美元的圖片真的很難理解,解釋需要一環接著一環
而 Matthew Ball 這篇關於虛擬世界的文章就是一個完美的例子...
-
#同場加映
① 2021成元宇宙元年|熱度直追 NFT 的 Metaverse ,將成為網路下個熱潮?
https://pse.is/3nel69
② 元宇宙時代 | 當《紐約時報》作者也換上企鵝 NFT 頭貼…
https://pse.is/3n8z9t
①+② 未來世界 | Nvidia CEO黃仁勳對「元宇宙 Metaverse、NFT和以太坊」的觀點及展望
https://pse.is/3mmcjh
-
✅ 即時新聞Telegram頻道
https://t.me/blocktemponews
✅ 每日精選 LINE:
https://line.me/R/ti/p/%40kgx9780p
✅ #五千人投資討論群 (已滿)
https://line.me/ti/g2/htySqS7SoKOuGGFx4Gn9dg
-
✅ 動區Line2群👇👇👇
https://bit.ly/dogemoon2
r運算子 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
r運算子 在 胡毓棠股海淘金 Youtube 的精選貼文
【重點個股】 : 康那香(9919)、恆大(1325)、熱映(3373)、高端疫苗(6547)、國光生(4142)、橘子(6180)、聯茂(6213)、台光電(2383)、群光(2385)、晶電(2448)、億光(2393)、久元(6261)、旺矽(6223)、鴻海(2317)、力成(6239)、安碁資訊(6690)
【重點族群】 : 蘋果概念股、中美貿易戰、散熱族群、特斯拉概念股、遊戲概念股、防疫概念股
胡毓棠是協助投資人投資決策的合格分析師,非凡財經台特約來賓,提供國內外重大財經新聞、理財建議,股票、期貨,AI期貨程式。免付費專線 : 0800-615588
加入胡毓棠Line群組享受最即時投資資訊 : https://line.me/R/ti/p/%40ssn1438l
【專長介紹】
學歷:台北大學統計系、政治大學國貿研究所
經歷:非凡財經台、商業台節目來賓:錢線百分百、股市現場、財經晚報等
專長:深入產業研究,對於市場有極高的敏感度,擅長挖掘中小型黑馬股。
操作特色:穩中求勝,結合技術面、籌碼面操作輔助,追求穩定利潤報酬。
r運算子 在 胡毓棠股海淘金 Youtube 的最讚貼文
有經驗的投資人就知道, 當市場關起一扇門,就會有另一扇門開啟
疫情影響部分產業,但也有不受疫情影響,甚至營收成長的產業
今年從寒假我們一路推薦的宅經濟產業,到疫情爆發後我們分析筆記型電腦、電競產業需求會爆發以及電子商務,因為電商需求大增延伸到物流公司需求,疫情期間大方向部局需求不變的雲端伺服器、高速運算拉貨不受影響,順著這樣的邏輯我們即將帶領這次專案加入的會員布局下一個產業個股,馬上加入胡毓棠【佈局抗疫高成長個股】專案搶先布局!
1.寒假受惠產業 :
【遊戲】 : 鈊象(3293)
【電子商務】: 東森(2614)、網家(8044)、富邦媒(8454)
【物流配送】: 宅配通(2642)
2.疫情爆期間受惠產業 :
【遊戲】 : 鈊象(3293)、橘子(6180)、歐買尬(3687)、網龍(3083)
【電競、NB】: 微星(2377)、技嘉(2376)
【電子商務】: 東森(2614)、網家(8044)、富邦媒(8454)
【物流配送】: 宅配通(2642)
【雲端高速運算、伺服器】: 金像電(2368)、南電(8046)、博智(8155)
【石英元件】: 晶技(3042)、加高(8182)
3.下一波看漲產業?
掌握產業輪動,搶先【布局抗疫高成長個股】
跟上胡毓棠股海淘金團隊操作!
【佈局抗疫高成長個股專案適合什麼樣的人?】
1.手中持股套牢者,我們先把弱勢持股淘汰,轉入強勢股
2.手中現金部位較多,想提前佈局潛力股的投資人
3.類股輪動太快,不知道如何選股的朋友
專案活動時間 : 4/24 - 5/6
●普通股票簡訊會員3個月只要36,800元
●普通股票簡訊會員6個月只要51,800元
●普通股票簡訊會員12個月只要88,800元
-
●特別股票簡訊會員3個月只要46,800元
●特別股票簡訊會員6個月只要68,800元
●特別股票簡訊會員12個月只要108,800元
【胡毓棠 - AI期貨程式】名額有限
1. 依據資金大小不同,客制化調整進出口數
2. AI期貨程式進場、出場,夜盤也能操作
因系統客制化調整,電話詢問特別助理個別服務
請留言或撥打免費專線 : 0800-615-588
專案活動時間 : 4/24 - 5/6
胡毓棠是協助投資人投資決策的合格分析師,非凡財經台特約來賓,
提供國內外重大財經新聞、理財建議,股票、期貨,AI期貨程式。
免付費專線 : 0800-615588
加入胡毓棠Line群組享受最即時投資資訊 : https://line.me/R/ti/p/%40ssn1438l
【專長介紹】
學歷:台北大學統計系、政治大學國貿研究所
經歷:非凡財經台、商業台節目來賓:錢線百分百、股市現場、財經晚報等
專長:深入產業研究,對於市場有極高的敏感度,擅長挖掘中小型黑馬股。
操作特色:穩中求勝,結合技術面、籌碼面操作輔助,追求穩定利潤報酬。
r運算子 在 偽學術 Youtube 的最讚貼文
[旅行的旅行] 行動傳播技術空間中的旅行:#當我們用GoogleMap找路時 / 李長潔 🚎
.
時常有人問我,你每次去日本的那些超級冷門的風景、傳說地點、氛圍氣喫茶老店,到底怎麼找到的,聽都沒聽過這些地方。剛開始,我會查詢中文與外文的旅行資訊,像是旅遊手冊、觀光網站,都是基本工作,可以給旅客一點基本的地理想像,如方位、氣候、規模、人文特色等。接著,我會做一件事—大量地運用google map細查地方資料。
.
地圖,是一種人對空間權力的掌握,當旅人們從地圖繪製者的手中,搶回擁有地圖的權力,這將如何改變我們的旅行生活?然而,我們真正因為google map而搶回了對空間的掌握嗎?我們先從紙本地圖的使用開始。
.
▓ #紙本地圖的時代
.
不只是到了旅遊的當下才使用google地圖來找路,而是平常沒事時,就打開地圖滑呀滑,細察預計拜訪的地點,了解地理資訊。不過,在2005年以前,旅行時掌握地理環境的技術大都依賴紙本地圖,旅客與觀光客在出發前,會購買旅遊手冊、旅行文學,透過特定旅行專家與旅遊資訊編輯的視野,來觀看地方(林子廉,2009)。在那時之前,各種「旅遊天書」隨著出國人數的增加,而銷售量大增。
.
出國旅行度假,不單僅是選好地方、買張機票、然後去就可以說「#這是我的旅行」,旅行的體驗是由生活中的不同媒介內容(電視、廣告、電影、書籍、旅遊手冊,現在還有社群網站)與你的真實旅程所交織而成(Urry, 2002)。當然也包含地圖。
.
地圖是一種地理狀態的再現。我們覺得地圖模擬了真實的環境樣貌,但事實上,地圖是一種「#簡化」、「#挑選」、「#裁切」,尤其是紙本地圖,在有限的平面版面上,地圖的終極目標並不是一比一的還原,而是透過地圖繪製與資料整理,表現製圖者對大地的擁有權、解釋權。
.
在從前的旅行中,我會在行前買一份巴黎的城市地圖,在台灣時就把旅行手冊上看到的景點標示在地圖中;並在旅程中逐一刪除,有時候還會用紅筆將散步走過的路徑畫上,以展示我對巴黎的熟稔程度。基本上,整張巴黎地圖我都畫滿了。
.
▓ #google地圖的出現
.
2005年,Google Map正式上線,一開始只是電腦版,同一年裡很快地推出手機版本,並且加入Google Earth的服務,直至今日,google的地圖是Google公司流量第二大的營運項目。Google Map運用了地理資訊系統(GIS),整合地表空間幾何特性以及地理屬性等兩種資訊之資料庫, GIS 中記錄的資料藉由適當的軟體解譯後可重現地表相關地形與地貌,使用者可以免費且自由地在地圖檔上標記並添加註記。這個地圖很快地成為旅行者的最佳找路工具,可以用微觀與巨觀的視野,審視空間樣態(廖酉鎮、陳均伊,2013)。
.
相對於傳統紙本繪製,#地理資訊系統(Geographic Information System,GIS)的廣泛應用,省卻了實物儲存的難處,也使我們可以在同一空間的地圖上看到不同的主題的重叠和互動,我們更能按照我們的想法,在給定的地圖框架上任意標籤,製作對我們有意義的地圖(Lo, 2012)。
.
Google不斷推出越來越豪華的地圖服務,像是「#交通資訊」、「#街景服務」、「#旅行規劃」,最近更加入虛擬實境的概念,將導航升級成「#AR導航」,透過 GPS 獲取用戶的位置,並使用街景資料產生「視覺定位系統」(Visual Positioning System,VPS),快速辨識周遭地標建築定位用戶位置,並在手機相機中以巨大的動畫箭頭結合街景,藉以更清楚地告知方向。這些方便的工具是積累在行動通訊技術、運算技術與人群使用習慣的大量應用與快速進步上,嶄新的地圖技術深刻地改變了旅行、旅人與城市的互動關係。
.
▓ #人與機器結合下的旅行:地理媒介
.
人與機器在移動技術空間中,被結合成一種人機複合體,或是Bruno Latour行動網絡理論中的「人—物」,這讓人的體驗更加複雜。你有沒有一種經驗,就是打開Google Map後,隨著指標轉動身體,試圖協調數位與真實的空間方向。或是,跟著導航行走,耳畔響起「向左轉」,就毫不猶豫地走向左方的街道。又或是,最一般的情況下,使用者會打開軟體,了解地理定位下自己與週邊資訊(店家、車站等)的關係。
.
進入到隨身行動傳播科技時代,人與物結合下的移動與定位本身就是一種資訊,這些資訊詮釋了流動空間、網絡連結、移動過程的具體樣態。一方面,機器深刻地鑲嵌入人類的生活世界中,反過來說,人們亦透過機器產生全新、方便、延伸的特殊經驗。這種人機合一、日常鑲嵌的 #地理媒介(geomedia)(McQuire、潘霽,2019),在旅行實踐中更顯鮮明。
.
在Web2.0時代,藉由地理媒介所構連起來的網絡式公共空間,展示了人類時空感知的嶄新轉變。透過行動傳播與數位化的技術,遊歷的地點本身不只是被媒介再現,而是,這些地點本身就是媒介,在程式運算的框架下,人與人、人與城市有了全新的關係:Google Map的使用與資料的積累,很大的程度上,人們利用社會實踐、消費行為與協商互動來定義旅行的地方。
.
例如這次我們旅行到關東地區,特地前往宇都宮吃餃子。在行前我們藉由Google Map的即時資訊決定乘車的方式,查詢車站附近所有的餃子店以及他的評價、照片、菜單,用街景服務來定位自己如何到達要去的「餃天堂」。然後在這家算是有特色的餃子店鋪,我們竟然在餃子裡吃到了一根鋼刷鐵絲,店家也沒有很認真地看待。就默默地打開Google Map說明了當下的狀況,並給予較低的星級。
.
▓ #自願式的地理資訊(volunteered geographic information)
.
上述的情境是一種建構主義的場境,使用者們可能自知的情況下,#自願參與地理資訊的建構,這稱做自願式的地理資訊(VGI,volunteered geographic information)(Sieber and Haklay, 2015),Google Map的VGI使得人們更有機會參與城市意義的詮釋,在公共參與的意義上,Google Map也是一種社群媒體,它建築在遊客、居民、店家等大量用戶的傳播意向性上。在McQuire與潘霽(2019)的「地理媒介」評斷便提到中,媒介傳播技術、隨身行動和城市地理元素的深度融合,共同造就了「#成為公共」(becoming public)的體驗,打開城市生活的審美維度,同時推動了「成為公共」的過程。城市中的社會關係和權力關係,不再僅僅依據根植於城市空間結構的生活形態,而是更直接地被轉化為主動的「傳播」過程。
.
從知識論的角度來看,Google Map有著三種資訊類型:自然的資訊、技術的資訊與文化的資訊。自然的資訊,如同人們所可以感受到的地形等;技術的資訊則如道路、水系的測量描述;而文化的資訊則指涉各種人類的行為,如駕駛、消費等。透過運算平台,當然也包含IG、FB上的「#社會標註」,像是打卡、分享美照、「#」,使用者、物、與城市風景大量交織成數位形式與真實形式共存的存在,並且在公共性的概念下交往互動。
.
可是,我們還是可以想像與批判,一個反烏托邦正在進行。有時候我們不知道自己正是地理媒介的延伸,甚至不得不參與地理資訊的建立。當你想要運用導航系統時,其使用者本身正參與著車流量預測的演算過程。當我們行動時,我們也正經歷一種數據式的物化,個人與機器結合後,個人在時空中的所有作為都有可能面臨資本主義的收編,例如在Google Map上顯示個人化的位置性商業廣告。
.
▓ #流動的社群與信任革命
.
旅行者們對Google Map的使用,構成了一種流動與移動的社群,這個社群強調的並非穩定的社會記憶,他們更欣賞獲得片刻的超凡體驗,與享受如遊戲般的過程,在虛實間讓自己更能夠掌握旅行的地方。從Google Map的旅遊嚮導設計就可以發現,Google Map將每一位參與地理資料建構的人們都當作「專家」,這個構想在另一個旅行APP「#TripAdvisor」裡也非常鮮明。你可以在「TripAdvisor」裡分享更多評價、文章與圖片,分享你在移動時的超凡體驗,以獲得「#頂尖攝影師」、「#飯店達人」等等標章,以提高個人體驗的可信度。
.
不過,有批評家認為,我們太容易把Google Map、Google Earth上的作為,理解為一種全景全知的圖像、透明的秩序,甚至是前面討論的參與和賦權的工具(Kingsbury & Jones, 2009)。閃耀著令人暈眩光茫的球體,反映了人類的戴奧尼索斯的妄想,我們狂亂地航行,歡天喜地地喧囂,我們全心全意、不加思索地信任它,卻低估了虛擬世界對真實世界的集體監控。
.
▓ #回歸地方化?
.
不過,站在創用的立場,我還是傾向對科技保持信任。信任研究者Bostman(2017)在《#信任革命》中談到,只有「信任」,人類才能在進程上有超越性的變革。當然,對Google Map的信任早在2010年以後就幾乎被廣大的使用者們接受了,雖然偶而還是會看到我父親打開地圖導航後,然後罵導航太笨,繼續走自己的路。但無疑得,Google Map扮演了旅行實踐的重要推動角色,它把商品、交通、約會與各種推薦搓合起來,讓旅行同時是個人的行動,也是集體的社群參與。也因為這些更加錯綜複雜的信任,旅人們才能獲得更多足以創新生活的服務。
.
回到McQuire的地理媒介概念中,如果傳統大眾媒體帶給旅行者與地方的是一種想像的、再現的、去地方化的全球化幻覺。那麼這些隨身、隨地的地理媒介,像是Google Map,則在旅行者與地方之間形成更回歸地方化的關係,同時還包含了跨文化溝通的實現,透過這樣的地理媒介技術,更能提高人們對差異性與流動性的接受程度,還可以確保城市網絡中與他者共存的技能。
_
_
#參考文獻:
.
1. 林子廉(2009)。旅遊手冊如何影響遺產觀光客對於原住民石柱真實性知覺、旅遊動機及體驗。文化大學觀光系碩士論文。
2. Urry, J. (2002). The tourist gaze. Sage.
3. 廖酉鎮, & 陳均伊. (2013). 讓地圖活過來一 Google Earth 運用於地球科學教學設計之應用. 科學教育月刊.
4. LO, K. H. (2012). 論班雅明式史觀和空間觀: 並以領匯霸權地圖為例. Cultural Studies@ Lingnan 文化研究@ 嶺南, 32(1), 1.
5. Sieber, R. E., & Haklay, M. (2015). The epistemology (s) of volunteered geographic information: a critique. Geo: Geography and Environment, 2(2), 122-136.
6. McQuire, S., 潘霽(2019)。From Media City to Geomedia: Cross-disciplinary Insights into Information Society from a Pioneering Australian Scholar。資訊社會學研究,36。
7. Botsman, R. (2017). Who Can You Trust?: How Technology Brought Us Together–and Why It Could Drive Us Apart. Penguin UK.
8. Kingsbury, P., & Jones III, J. P. (2009). Walter Benjamin’s dionysian adventures on Google Earth. Geoforum, 40(4), 502-513.