機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改
人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警
2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室
本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。
長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。
據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。
立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。
由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。
其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。
另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。
根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。
背景知識說明
本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。
由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。
何謂人臉辨識
人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。
目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:
‧ 普遍性:屬於任何人皆擁有的特徵。
‧ 唯一性:除本人以外,其他人不具相同的特徵。
‧ 永續性:特徵不易隨著短時間有大幅的改變。
‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。
‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。
人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。
人臉辨識的步驟
人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。
人臉偵測
基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。
Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。
人臉的預處理
偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:
‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。
‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。
‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。
人臉特徵摘取
關於人臉特徵摘取,相關的技術說明如下:
‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。
‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。
‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。
何謂酒精鎖
酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。
根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。
在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。
許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。
對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。
認識區塊鏈
區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。
區塊鏈的原理與特性
可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。
關於區塊鏈的特性,可分成以下四部分做說明:
1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。
2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。
3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。
4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。
區塊鏈與酒精鎖
由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。
酒駕防偽人臉辨識系統介紹
為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。
在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。
如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。
區塊鏈打包上鏈模擬
在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。
要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。
將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。
情境演練說明
話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。
已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。
待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。
酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。
系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。
如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。
結語
酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。
為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。
附圖:圖1 人臉辨識的步驟。
圖2 人臉特徵點偵測(正臉)。
圖3 人臉特徵點偵測(左側臉)。
圖4 人臉特徵點偵測(右側臉)。
圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
圖6 區塊鏈分散式節點的概念圖。
圖7 系統概念流程圖。
圖8 取出人臉128維特徵向量。
圖9 儲存車輛相關資料及人臉資料到區塊。
圖10 HASH後及打包成區塊的結果。
圖11 汽車發動前小禛的人臉影像。
圖12 小禛的人臉影像特徵點。
圖13 小禛的人臉特徵向量資料。
圖14 系統通過酒測檢測者與駕駛人為同一人。
資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D
同時也有1部Youtube影片,追蹤數超過5,870的網紅珊蒂微AI,也在其Youtube影片中提到,【人物專訪|臺北大學商學院 統計系教授 吳漢銘 Han-Ming Wu】 時常有朋友問說:『以前統計學得很爛,也可以接觸與學習AI嗎?』 這個問題的描述看起來很簡單,但它並不是一個『能 vs. 不能』的是非題而已,其答案是有分層次的。趁著這次訪問問 臺北大學商學院 統計系的吳漢銘(Han-Ming...
「機器學習與統計學」的推薦目錄:
- 關於機器學習與統計學 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於機器學習與統計學 在 飛碟早餐-唐湘龍時間 Facebook 的最佳貼文
- 關於機器學習與統計學 在 李開復 Kai-Fu Lee Facebook 的最佳解答
- 關於機器學習與統計學 在 珊蒂微AI Youtube 的最佳解答
- 關於機器學習與統計學 在 機器學習入門——我的統計學該從哪裏補起? 原創趙寧遠... 的評價
- 關於機器學習與統計學 在 機器學習中的統計基礎– Hoeffding Inequality - YouTube 的評價
- 關於機器學習與統計學 在 從統計學的角度(Bias and Variance) 來看Machine Learning Error 的評價
機器學習與統計學 在 飛碟早餐-唐湘龍時間 Facebook 的最佳貼文
今天的財經產業趨勢單元,邀請中華保險與理財規劃人員協會理事長 劉先覺、大誠保險經紀人股份有限公司行銷協理 林嫺來到空中,聊聊第二屆的亞太保險獎!擁有豐沛保險學經歷背景的保險與理財規劃人員協會(IFPA)理事長劉先覺,就其近30年保險戰將的實務經驗,繼攜手微軟合作「保險智慧機器人」後,更將亞太地區最大金融服務協會APFinSA所舉辦的首屆「亞太保險獎」引進國內,讓世界看見台灣,同時協助台灣保險從業人員,贏得人生第一張國際獎項肯定,建立永續的保險事業榮耀版圖。
想了解更多有關亞太保險獎資訊按這裡!https://www.ifpa.org.tw/convention/9
📻聽重播按這裡!https://youtu.be/SBjpd3TFBJc
▶ 飛碟聯播網 YouTube《飛碟早餐》頻道 http://bit.ly/2QVQsFh
▶ 網路線上收聽 http://www.uforadio.com.tw/stream/stream.html
▶ 飛碟APP,讓你收聽零距離
Android:https://reurl.cc/j78ZKm
iOS:https://reurl.cc/ZOG3LA
▶ 飛碟Podcast
SoundOn : https://bit.ly/30Ia8Ti
Apple Podcasts : https://apple.co/3jFpP6x
Spotify : https://spoti.fi/2CPzneD
Google 播客:https://bit.ly/3gCTb3G
◎內容介紹
保險其實是一種服務行業,不同於其他服務業的是,他不是一次性的買賣,而是一項終生的服務。當大環境不斷的變遷、政策、法規、資產的變更,保險從業人員,需要不斷的學習,才能因應客戶以及市場需求。中華保險與理財規劃人員協會是由一群優秀的保險人員所組成,全名為Insurance and Financial Practitioners Association of Taiwan簡稱IFPA。成立宗旨主要是希望金融保險相關領域的從業人員,能互相交流學習與成長,提升專業素養。在歷屆理事長及大會主席的推動下,為台灣打響國際知名度,與世界接軌,未來更將繼續秉持品質、服務、成長的理念,協助會員們努力充實自我。另外也引進了國際性證照-FChFP的認證課程,「FChFP特許財務規劃師」是專為保險從業人員所設計的一套專業訓練,通過這個認證,將使得從業人員的專業度,更受客戶肯定。
擁有豐沛保險學經歷背景的保險與理財規劃人員協會(IFPA)理事長劉先覺,就其近30年保險戰將的實務經驗,繼攜手微軟合作「保險智慧機器人」後,更將亞太地區最大金融服務協會APFinSA所舉辦的首屆「亞太保險獎」引進國內,強調將帶領台灣保險業打一場漂亮的亞洲盃,讓世界看見台灣,同時協助台灣保險從業人員,贏得人生第一張國際獎項肯定,建立永續的保險事業榮耀版圖。
◎來賓介紹:劉先覺
IFPA社團法人中華保險與理財規劃人員協會 理事長
好險網科技股份有限公司 董事長
政大金融科技國際產學聯盟產業聯絡中心 執行長
逢甲大學統計學系研究所 兼任教授
社團法人台灣金融服務業聯合總會「金融科技諮詢委員會」 委員
臺灣金融科技協會 理事
◎來賓介紹:林嫺
2017~ 大誠保險經紀人業務協理
1999~2017 全球人壽公司業務協理
1996~1999 美國家庭人壽台灣分公司經理
機器學習與統計學 在 李開復 Kai-Fu Lee Facebook 的最佳解答
我希望20歲時就知道的七件事
最近正是各大學的開學季,疫情後初次重返校園,相信大家都滿懷欣喜和對未來的憧憬。當我20歲的時候,也在大學裡享受著求知的樂趣,當然,也少不了年輕的困惑、迷茫。
今天想跟大家分享我的人生經歷,有找到一生所愛的欣喜,也有做錯事的失落,還有銘記至今的感動。如果人生可以從頭再來,我希望自己在20歲時就知道這些。
一、“奇妙的錯位”,讓我找到人生熱愛
20歲時,我就讀于哥倫比亞大學文理學院。我當時不知道文理學院和工程學院的區別,我作為一個工程師卻在文理學院讀書。
但就是這樣一個奇妙的錯位,讓我讀到了很多經典,學習到了許多在工程學院根本學不到的內容。這些人類智慧和文學知識豐富了我的讀寫能力,一定程度上幫助我實現了很多寫作和演講上的成就。
在那個年代,律師和醫生是大家最嚮往的職業。我本以為自己也會成為一名律師,所以最初學的是法律專業。但一段時間之後,我發現法律不太適合我。我經常上課睡著,而且成績也不好,對同學們都很喜歡的內容提不起興趣。
於是,20歲的我做了一個決定,轉去電腦專業,學習程式設計和人工智慧,最終找到了我一生所熱愛的事情。
作為一個年輕的工程師,電腦令我癡迷。我發現我十分擅長電腦科學,不用怎麼費勁就可以輕鬆拿到A。
電腦和人工智慧是很棒的學科,奠定了我職業發展的基礎。有一句名言說,“當你從事喜歡的工作時,就不會覺得自己是在工作”,儒家有句話也說“知之者不如好之者,好之者不如樂之者”。
這其中蘊含著大智慧:當你從事喜歡的事情,睡覺、吃飯、洗澡你都會不自覺地去思考這件事;同樣,你會越來越擅長,更加喜歡它,形成良性迴圈。
二、“我不同意你,但我支持你去做”
從哥大畢業後,我前往卡內基·梅隆大學學習語音辨識和人工智慧。
那時的AI研究形勢並不好,雖然我的導師瑞迪教授(Raj Reddy,圖靈獎得主、卡內基·梅隆大學電腦系終身教授) 希望我採用“專家系統”,但我卻不是很認同。
我認為,機器學習應該讓電腦發揮長處,而不是跟著人的想法亦步亦趨。於是我鼓起勇氣,對瑞迪教授說“感謝您的指導,但我不想再繼續研究專家系統了,我希望用基於統計學的機器學習。”
我以為瑞迪教授會有些失望,沒想到他卻一點都沒有生氣。教授仔細聽我解釋完之後跟我說:
“開複,你對專家系統和統計的觀點,我是不認同的,但是我可以支持你用統計的方法做,因為我相信科學沒有絕對的對錯,我們都是平等的。而且,我更相信一個有激情的人是可能找到更好的解決方案的。”
那一刻,我的感動無以倫比。這不僅僅是一種慷慨,也是對科研新人的尊重。不僅如此,他還給我提供了很多資源,包括資料、設備和資金,對我最後取得博士學位幫助很大。瑞迪教授既是我AI科學研究的導師,也是我人生道路的導師。
“我不同意你的看法,但我支持你”這句話我記了很久。在我進入企業界之後,每當同事們有不同意見時,我都會鼓勵他們勇敢嘗試自己的想法:當這個想法成功時,對他個人和對企業都會帶來益處;而當這種想法失敗時,這種被信任和支持的感覺也會讓他們越挫越勇。
三、創新不重要,實用性創新才重要
畢業一段時間之後,我選擇去蘋果公司工作,也把這種語音辨識技術應用到了蘋果的產品中。現在Siri研發小組的成員,就有很多是我當年的同事。再後來我去了SGI公司。這家公司現在已經聲名不顯,但在當時的矽谷,SGI是一家和谷歌齊名的公司。
在SGI,我做的產品叫“3D流覽器”。大家可能都沒聽說過,其實這純粹是一群科學家的想法:在流覽器裡建一個3D世界,能夠導航,移動物體,和做非常酷炫的廣告。
我們當時已經做出了產品,並且運行得相當不錯了。我們盲目地相信,只要做出高科技的產品,就自然會有顧客和市場。然而事實是,沒人想購買和使用這個產品。
後來,SGI換了一個新的CEO,他為這個項目以及所耗費的公司資源感到失望。我告訴他,“這是世界上最好的VR技術,如果你不想留著,至少我們可以賣點錢。”
新CEO給了我一個期限,讓我尋找買家。我本以為能賣個好價錢,但最後還是以比較便宜的價格賣出去的。我感到十分內疚,自責當初就不應該組織這樣一個專案,看起來很酷,卻沒考慮實用性。
其實很多年輕人創業都會做出類似的決策,所以我非常建議大家再三考慮這些創新想法。創新不是最重要的,有實用性的創新才重要。
當你在設計一個技術、產品或創辦一家公司時,要想到你的投資者們正為此冒著巨大的風險。
四、如果想要,就積極主動地去爭取
從SGI離開之後,我就回到了中國,創辦了微軟中國研究院(後來的微軟亞洲研究院),《麻省理工技術評論》將其評為全球最熱門的電腦實驗室之一。當時研究院的主要成員,如今大都已成為中國知名科技企業的CTO或高管,像百度、阿裡巴巴等。
互聯網崛起之後,我對這個神秘的世界興趣日濃。當時最火的互聯網公司是谷歌,大家開玩笑說,如果你沒有得到谷歌的面試機會,就證明你不夠聰明。於是我給谷歌時任CEO埃裡克·施密特寫了封郵件,希望獲得面試機會。2005年,我正式加盟谷歌,擔任中國區總裁。
你們可能會問,你這麼資深還要自己寫信?他們不會直接聯繫到你,提供一個職位嗎?這就是我想告訴你們的另外一件事。其實當時谷歌和微軟正試圖達成人才競爭的約定,禁止主動挖對方牆腳。雖然這個約定沒有談成,但是當時要不是我的自薦,谷歌根本不會發現我,也就不會有後來的工作機會。所以,如果你想要,就積極主動地去爭取。
五、跟隨自己的心,找到心底的熱愛
隨著移動互聯網的快速發展,一大批創業公司開始湧現,我意識到中國的創業時代已經來臨,就像當初蘋果、微軟等公司創立時一樣,北京很可能變成中國的矽谷。
我想起了史蒂夫·約伯斯在斯坦福大學演講時說的一句話,跟隨自己的心,找到心底的熱愛。我們的人生由無數的節點構成,當你跟隨自己的內心,多年之後回首過往,會發現每一個節點的每一個選擇都是互相聯繫的。
你無法準確的預測未來,但是要相信,只要傾聽內心的聲音,這些選擇都會對你產生潛移默化的影響。
2000年左右,我給中國的大學生們寫了7封信,這也是追隨我的內心,幫助年輕人成長。我曾經為大約50萬名學生做過演講,出版了10本書,其中有5本都是寫給學生們的。
在微軟中國、SGI以及谷歌的工作,也讓我對科技瞭解頗多,所以我希望成為一名科技投資人,為初創科技公司提供幫助,創新工場的成立因此就自然而然的發生了。
這張圖是創新工場成立第一年的校招海報,上面寫著“加入你的公司”。我們的目標是讓年輕人以工程師的身份進入創新工場,通過技術創新得到資金支援,成為下一個成功公司的CEO。
這張海報中隨機挑出的八個人裡,有五個市值2億美元以上公司的CEO。所以我對於我們孵化創業公司的成績還是很驕傲的。
當AI時代來臨,創新工場投資了幾十家AI公司,其中包括五家獨角獸,我們還創建了AI工程院,並從中培育出了AI賦能與技術方案公司創新奇智。這些節點串起了我的經歷,也串起了中國過往10年的創業歷程。
六、世界上最富有的不是擁有的最多的人,而是想要的最少的人
回首過往,我真的是全心全意地投入到工作之中,一定程度上算是一個工作狂,我因此取得了一些成就,獲得了團隊的支持和外界的稱讚,我認為這樣的自己非常幸運。
上面這張圖片是2000年拍的,那時我剛做完一個手術,不能下床,於是讓團隊幫我做了這樣一個架子,我可以躺在床上繼續看電腦和工作。
這份熱情持續到六年前,直到我被診斷出患有淋巴癌四期。擴散的癌細胞取代了我的野心,我不得不接受生命可能只剩下幾個月的現實。朋友看我很痛苦,特地帶我去拜見星雲大師。
有一次,大師突然問我:“開復,有沒有想過,你的人生目標是什麼?”
我不假思索地回答:“‘最大化影響力’、‘世界因我不同’!”這是我長久以來的人生信仰:一個人能在多大程度上改變世界,就看自己有多大的影響力;影響力越大,做出來的事情就越能夠發揮效應……
大師沉吟片刻後說:“改變世界這個想法太狂妄了,也許只是貪婪的藉口。什麼是‘最大化影響力’呢?一個人如果老想著擴大自己的影響力,你想想,那其實是在追求名利啊!人生一回太不容易了,不必想要改變世界,能把自己做好就很不容易了。
我無法反駁他,我的那些聽起來宏大的目標,其實只是貪婪和欲望的藉口。他送給我一句話,“世界上最富有的不是擁有的最多的人,而是想要的最少的人”。
這句話讓我警醒,後來每當我覺得自己被欲望佔據時,都會想到這句話;每當我有想改變世界的想法時,我會讓自己思考,我這樣做究竟是不是為了追逐名利……
我學到這一課太晚了,之前的努力工作讓我錯失了很多與家人相處的機會:我的父親去世了,我甚至沒能來得及告訴他我愛他;我的母親得了失智症,認不出我了;我的孩子們已經長大,而我還不太瞭解她們……
我在化療期間讀了一本書,是Bronnie Ware所著的《臨終前最後悔的五件事》。正如書裡所寫,在臨終之時,沒有人會因為沒有努力工作而後悔,絕大多數人最後悔的事情,都是未能花更多時間與所愛之人相處。
我從星雲大師和Bronnie Ware學到了很多。我開始改變自己的工作方式,花更多的時間陪伴家人。母親去世前,我搬回家陪她度過了最後的時光;當孩子需要我時,我會把她們放在第一位,工作第二;我會花更多的時間和家人在一起,比如說出去旅行……
七、毫無保留地愛你所愛之人
這段人生經歷改變了我的想法,人生的意義應該是給予他人無條件的愛。在AI時代,這種愛更加難能可貴。
AI在做重複性工作方面比我們有優勢,但將人類與AI區別開的,是愛與創造。不管科幻小說如何描述,AI終究是沒有感情的。AlphaGo不喜歡下棋,它贏了比賽不會覺得開心,輸掉比賽也不會難過,事實上,它可能根本就不知道我們為什麼要下棋。
AI承擔重複性的工作並不意味著人類沒有工作可做,需要人情味和愛的工作仍然只有人類才能從事,比如導遊、禮賓、護士、教師等。
長遠來看,我更願意相信30年之後,我們會覺得AI的出現是件幸事:它沒有搶走我們的工作,而是將人類從繁瑣的重複性工作中解放出來,讓我們有時間去做自己喜歡和擅長的事情,構建出人類與AI共存的美好藍圖。
這就是我在過往的人生歲月中學到的七件事。當我在SGI公司的項目失敗時,我知道了創新不能忽略實用性;當我面臨死亡時,我學到了要毫無保留地愛你所愛之人。
One more thing -- 你看了這篇文章可能會發現我最重要的人生教訓不是來自成功,而是來自我的失敗。所以,請記住,你人生中的失敗,並不是對你做錯事的懲罰,而是一個學習人生課程的寶貴機會。
機器學習與統計學 在 珊蒂微AI Youtube 的最佳解答
【人物專訪|臺北大學商學院 統計系教授 吳漢銘 Han-Ming Wu】
時常有朋友問說:『以前統計學得很爛,也可以接觸與學習AI嗎?』
這個問題的描述看起來很簡單,但它並不是一個『能 vs. 不能』的是非題而已,其答案是有分層次的。趁著這次訪問問 臺北大學商學院 統計系的吳漢銘(Han-Ming Wu) 教授 ,我們來跟他聊聊這件事。
然而,吳老師除了自身的數理統計專業,也相當注重生活各面向的平衡,是一位很有層次的老師,因此我們話匣子一打開,聊的議題就更多了。
影片分前中後三個層次:
👉前:我們與統計的距離是否就是與AI的距離/推薦統計書
👉中:導覽北大校園/老師講笑話的功力/對小孩的教育觀(意志力訓練)
👉後:人工智慧的跨領域精神 (興趣廣泛/嘗試新事物/素養/終生學習的態度)
【延伸閱讀】
統計學和機器學習到底有什麼區別?:https://mp.weixin.qq.com/s/xCJBowXS89UlHA07R8WNuw
#統計老師推薦統計書
#我們與惡的距離
#我們與統計的距離是否就是與AI的距離
#機器學習與統計學
#人工智慧的跨領域精神
#臺北大學
#統計系
#吳漢銘
#人工智慧
#AI
#跨領域
#AACSB
#紙飛機路跑
#台灣人工智慧學校
機器學習與統計學 在 機器學習中的統計基礎– Hoeffding Inequality - YouTube 的推薦與評價
機器學習 中的 統計 基礎– Hoeffding Inequality. 251 views 2 years ago. PyInvest. PyInvest. 7.36K subscribers. Join. Subscribe. 8. I like this. ... <看更多>
機器學習與統計學 在 從統計學的角度(Bias and Variance) 來看Machine Learning Error 的推薦與評價
從機器學習的角度來看,我們對於目標通常會選擇一個模型來進行訓練,針對此模型我們手上會有一整個model set ( 從林軒田的角度來說就是hypothesis set ), ... ... <看更多>
機器學習與統計學 在 機器學習入門——我的統計學該從哪裏補起? 原創趙寧遠... 的推薦與評價
機器學習 入門——我的統計學該從哪裏補起? 原創趙寧遠竹間智能Emotibot... ... <看更多>