✍️ [ 5 個你可以記住的執行數據分析專案的關鍵步驟 ]
這與是不是技術人員無關,只要你做的事情需要透過 #數據驅動成果,那你就需要了解這個流程。
-
如果你剛好是以下的角色,那讀完肯定對你有幫助:
-
🧑🦰數據分析專案經理
➡️ 你可能需要理解所謂的數據分析產品與服務要經過哪些流程,以便於拆解管理專案工作計畫與專案時程,並找到合適職能的工作者一起來完成這個專案。
👩🦰參與數據分析專案的數位行銷人
➡️ 我在猜已經不少數位行銷的人已不知不覺跨界到數據分析領域了,不論你是用 google sheet/Excel ,或是已經開始學習商業智慧報表工具 (Data Studio/Tableau/PowerBI),那你就更方便可以完成數據分析題目,因為使用商業智慧工具的操作過程也需要有數據分析流程的 mindset 喔。
🧑🦱參與數據分析專案的技術人
➡️ 那就更不用說了,你要開始用大局的角度思考數據分析專案,要知道你演算法跑到天荒地老到底是在解決什麼問題,讓你花的心力可以真正跟老闆或其他 stakeholder 看得懂的成效成正比。
👧你還沒工作,或想要開始轉換到數據分析領域,需要一些經歷來證明自己
➡️ 很多人都會問我,我都沒相關工作經驗那怎麼辦?我要如何走向數據分析領域?
✔️這就是最好的解答 - 「#累積數據作品集」,不要責怪周遭沒有真實的數據,現在已經有太多外部的公開數據可以使用,只要拿到你有興趣的數據,你就可以試著站在這些流程來做成作品集,切記,「定義商業問題」很重要!就算你下載的數據本身沒告訴你他的 #商業痛點 是什麼,你也可以 #試著自己想像商業痛點,並針對商業痛點對症下藥,那即使你沒有任何相關工作經驗,你也有機會讓面試官知道你有很紮實的數據分析思維與技術了。
-
如果還有其他更想知道的內容,歡迎留言或私訊我喔🙌
#資料科學知識 #資料科學 #AI #機器學習 #數據思維 #行銷科技 #預測 #資料科學與我們日常有關 #martech #數據分析流程 #數位足跡 #客戶生命週期 #ltv #成長行銷 #職涯建議
Search