外國解說,mRNA 疫苗如何造成免疫力。
另文:細胞廢掉一組 mRNA,過程大約需要45分鐘。https://www.sciencedaily.com/releases/2014/03/140320131139.htm
谷歌翻譯以上原文:(茂叔用 Google Translate,避免讀者擔心個人偏見滲入。)
RNA編碼在細胞繁殖中起關鍵作用的蛋白質,但是一旦這些蛋白質合成,細胞調節其去除的方式仍然是一個謎。北卡羅來納大學教堂山分校的研究人員解決了這一謎團,他們確定了細胞從細胞質中去除RNA的步驟。
了解RNA的基本功能將有助於建立對蛋白質和多種途徑的了解,這些蛋白質和途徑是正常生物學功能和遺傳疾病(如癌症)發展的核心。使用高通量測序,由UNC醫學院Kenan傑出生物化學和生物物理學教授,生物學和基因組科學整合計劃成員以及UNC Lineberger綜合癌症中心成員William F. Marzluff博士領導的團隊對數百萬人進行了分析。 RNA鏈鑑定細胞降解組蛋白信使RNA(mRNA)的過程。研究結果發表在“分子細胞”雜誌上。
“使組蛋白mRNA的量正確並使其以正確的數量存在是非常關鍵的。細胞使用的主要機制之一是在DNA合成停止時迅速清除它們。細胞這樣做或染色質弄亂了。” Marzluff說。
組蛋白mRNA製造染色質的蛋白質成分,這些蛋白質與DNA一起形成細胞核中的染色體。與所有RNA一樣,它由核鹼基鏈,腺嘌呤,胞嘧啶,鳥嘌呤和尿嘧啶分子構成,提供“字母”。遺傳密碼。在mRNA中,稱為核醣體的分子機器讀取核苷酸的順序,並使用該信息組裝蛋白質。
細胞嚴格調節組蛋白mRNA的水平。在細胞繁殖期間,隨著DNA的複制,mRNA的水平增加35倍,並隨著細胞開始分裂而恢復到正常水平。儘管研究人員已經了解了從細胞中去除RNA的一些步驟,但Marzluff的團隊是第一個觀察整個過程的人。
Marzluff說:“在正確的時間降解RNA與製造RNA一樣重要。降解的調控與轉錄的調控相同。” “我們可以衡量它正在被降解的事實,現在我們已經找到了其中的所有中間產物。”
當一串尿苷分子被添加到分子的尾端時,組蛋白mRNA的降解就開始了。這一過程稱為寡尿酸化。這表明被稱為外泌體的蛋白質複合物開始降解mRNA。當外泌體失速時,添加另一條尿苷分子鏈以重新開始該過程。當外泌體的前進被附著在RNA上的核醣體阻斷以合成蛋白質時,Marzluff發現了證據,即稱為Dom34 / Hbs1的蛋白質複合物將核醣體與RNA分離,從而使外泌體再次繼續存在。重複這些過程,直到mRNA完全分解。“博士後研究員Mike Slevin博士開發了一種分離所有這些分子並對其進行測序的方法。JanPrins博士的研究生Josh Welch,
整個過程大約需要45分鐘才能完全降解組蛋白mRNA。使用高通量基因測序儀,Marzluff的團隊能夠量化具有尿尾的mRNA鏈的數量,並將其與不具有尿尾的mRNA進行比較,在整個過程中對分子進行計數以確定降解速率。
儘管這項研究僅針對一種類型的RNA,但Marzluff表示,他相信許多類型的RNA可能會發生相同或相似的過程。研究團隊的下一步是使用相同的技術來測量整個細胞中RNA的降解。Marzluff於1987年發表了有關組蛋白RNA降解的第一篇論文,並稱讚了新技術的發展-低成本高通量DNA測序-該技術對人類遺傳學具有快速的先進理解,使這項研究成為可能,從而使研究人員可以將目光投向大範圍。這種情況下的RNA數量“這些新型測序儀實際上正在發生的事情是,人們正在尋找使用相同技術來問不同類型問題的方法。這只是準備樣品以向機器問您想要的問題,”馬茲魯夫說。
尿嘧啶 在 國家衛生研究院-論壇 Facebook 的最讚貼文
【mRNA疫苗臨床試驗95%有效! mRNA疫苗會是COVID-19的救世主嗎?】:發表在新英格蘭醫學期刊(NEJM)上的兩篇論文提到【註1】,兩個mRNA疫苗臨床研究分別收案3萬多人與4萬多人,在打完疫苗之後的兩個月追蹤當中,施打疫苗讓COVID-19感染率減少了95%!【註3】
在本文開始前,在此先簡述說明一下「分子生物學的中心法則」,建立對DNA、RNA、mRNA的基礎認識。
■分子生物學的中心法則 (central dogma)(圖1)
用最簡單最直接的方式來描述的話,生物體的遺傳訊息是儲存在細胞核的DNA中,每次細胞分裂時,DNA可以複製自己 (replication),因而確保每一代的細胞都帶有同樣數量的DNA。
而當細胞需要表現某個基因時,會將DNA的訊息轉錄 (transcribe) 到RNA上頭,再由RNA轉譯 (translate) 到蛋白質,而由蛋白質執行身體所需要的功能。這也就是所謂的分子生物學的中心法則 (central dogma)。
對於最終會製造成蛋白質的基因來說,RNA是扮演了中繼的角色,也就是說遺傳訊息本來儲存在 DNA 上頭,然後經過信使 RNA (messenger RNA, mRNA) 的接棒,最後在把這個訊息傳下去,製造出蛋白質。【註4】
■冠狀病毒的基因組由RNA構成
RNA不如DNA穩定,複製過程容易出錯,因此一般RNA病毒的基因組都不大。但冠狀病毒鶴立雞群,基因組幾乎是其他RNA病毒的三倍長,是所有RNA病毒中最大、最複雜的種類。
冠狀病毒還能以重組RNA的方式,相當頻繁地產生變異,但是基因組中位在最前端的RNA序列相對穩定,因為其中有掌控病毒蛋白酶與RNA聚合酶的基因,一旦發生變異,冠狀病毒很可能無法繼續繁衍。
目前抗病毒藥物的研發策略之一,正是設法抑制病毒RNA複製酶(RdRp)。而最前端的RNA序列也是現階段以反轉錄聚合酶連鎖反應(RT-PCR)檢驗新冠病毒時鎖定的目標。中央研究院院士賴明詔表示,不同病毒的核酸序列當中還是有各自的獨特變異,正好用來區分是哪一種冠狀病毒。【註5】
■SARS-CoV-2是具有3萬個鹼基的RNA病毒
中國科學院的《國家科學評論》(National Science Review)期刊【註2】,2020年3月發表《關於SARS-CoV-2的起源和持續進化》論文指出,現已發生149個突變點,並演化出L、S亞型。
病毒會變異的原因可略分成兩種:
▶一是「自然演變」
冠狀病毒是RNA病毒,複製精準度不如DNA病毒精準度高,只要出現複製誤差,就是變異。
▶二是「演化壓力」
當病毒遇到抗體攻擊,就會想辦法朝有抗藥性的方向演變,找出生存之道。【註6】
■mRNA 疫苗是一種新型預防傳染病的疫苗
近期,美國莫德納生物技術公司(Moderna)與輝瑞公司(Pfizer),皆相繼宣布其COVID-19 mRNA疫苗的研究成果。
莫德納公司在2020年11月30日宣布他們的mRNA-1273疫苗在三期臨床試驗達到94.1%(p<0.0001)的超高保護力,受試者中約四成為高風險族群(患糖尿病或心臟病等),7000人為高齡族群(65歲以上),另也包含拉丁裔與非裔族群(報告中未提到亞洲裔)。
傳統大藥廠輝瑞公司,亦在美國時間11月18日發佈令人振奮的新聞稿:他們的RNA疫苗(BNT162b2)三期臨床試驗已達設定終點,保護力高達95%(p<0.0001)。該試驗包含了4萬名受試者,其中約有四成受試者為中高齡族群(56~85歲),而亞洲裔受試者約占5%。
■mRNA疫苗為什麼可以對抗病毒?
為什麼mRNA疫苗會有用?就讓我們先從疫苗的原理「讓白血球以為有外來入侵者談起」。
在過往,疫苗策略大致上可分為兩種:
● 將病毒的屍體直接送入人體,如最早的天花疫苗(牛痘,cowpox)、小兒麻痺疫苗(沙克疫苗,polio vaccines)、肺結核疫苗(卡介苗,Bacillus Calmette-Guérin, BCG)以及流感疫苗等。
✎補正
卡介苗 BCG(Bacillus Calmette-Guerin vaccine) :卡介苗是一種牛的分枝桿菌所製成的活性疫苗,經減毒後注入人體,可產生對結核病的抵抗力,一般對初期症候的預防效果約85%,主要可避免造成結核性腦膜炎等嚴重併發症。
▶以流感疫苗為例,科學家通常先讓病毒在雞胚胎大量繁殖後,再將其殺死,也有部分藥廠會再去除病毒屍體上的外套膜(envelope),進一步降低疫苗對人體可能產生的副作用後,再製成疫苗。
● 將病毒的蛋白質面具,裝在另一隻無害的病毒上再送入人體,如伊波拉病毒(Ebola virus disease, EVD)疫苗等。
▶以伊波拉病毒疫苗為例,科學家會剪下伊波拉病毒特定的醣蛋白(glycoproteins)基因,置換入砲彈病毒(Rhabdoviridae)的基因組中,使砲彈病毒長出伊波拉病毒的醣蛋白面具。
上述例子都是將致命病毒的部分殘肢送入人體,當病毒被樹突細胞(dendritic cells)或巨噬細胞(macrophages)等抗原呈現細胞(antigen-presenting cell, APC)吃掉後,再由細胞將病毒殘肢吐出給其他白血球,進而活化整個免疫系統,然而,mRNA疫苗採取了更奇詭的路數 - 「讓人體細胞自己生產病毒殘肢!」
■mRNA 疫苗設計原理(圖2)
將人工設計好可轉譯出病毒蛋白質片段的mRNA,包裹於奈米脂質顆粒中,送入淋巴結組織內,奈米脂質顆粒會在細胞中釋出RNA,使人體細胞能自行產出病毒蛋白質片段,呈現給其他白血球,活化整個免疫系統。
■mRNA疫苗設計流程(圖3)
1「科學家獲得病毒的全基因序列」
因社群媒體的發達、公衛專家、病毒研究者以及期刊編輯的努力,這次的COVID-19病毒序列很快的被發表;中國北京疾病管制局的研究團隊,挑選了九位患者,其中有八位,都有前往華南海鮮市場的病史,並從這些患者採取了呼吸道分泌物的檢體,運用次世代定序 (NGS,Next Generation Sequencing) 的方式,拼湊出新型冠狀病毒全部與部分的基因序列。並陸續將這些序列資料,提供給全世界的病毒研究者交互確認,修正序列的錯誤。
2「解析病毒基因群裡所有的功能,選定目標蛋白質(Covid-19病毒棘蛋白質)」
以冠狀病毒為例,通常會選病毒表面的棘狀蛋白(spike protein)。因為棘蛋白分布於病毒表面,可作為白血球的辨識目標,同時病毒需透過棘蛋白和人體細胞受體(receptor)結合,進而撬開人體細胞,因此以病毒繁殖的策略而言,此處的蛋白質結構較穩定。
3「製造要送入人體的mRNA,挑選出會製造棘蛋白的mRNA進行修飾」
挑選會轉譯(translation)出目標蛋白質的mRNA,並進行各項修飾,以提高該人工mRNA在細胞裡被轉譯成蛋白質的效率。如:輝瑞的mRNA疫苗(BNT162b1)選用甲基化(methylation)後的偽尿嘧啶(1-methyl-pseudouridine)取代mRNA裡的原始尿嘧啶(uracil, U),有助於提升mRNA的穩定性,並提高mRNA被轉譯成病毒棘蛋白的效率。
4「將人工mRNA裹入特殊載體,將mRNA包裹入特殊載體顆粒中」
因為mRNA相當脆弱且容易被分解,因此需要對載體進行包裹和保護。然而,有了載體後,接踵而來的問題是「該怎麼送到正確的位置(淋巴結)?」。而輝瑞和莫德納不約而同地都選用了奈米脂質顆粒(lipid nanoparticles)包裹mRNA載體,奈米脂質顆粒通常由帶電荷的脂質(lipid)、膽固醇(cholesterol)或聚乙二醇(polyethylene glycol, PEG)修飾過的脂質等組成,可以保護RNA,並將mRNA送到抗原呈現細胞豐富的淋巴結組織。
5「包覆mRNA的奈米脂質顆粒,注射在肌肉組織」
使其能循環到淋巴結,被淋巴結中的細胞吃掉。奈米脂質顆粒釋放出mRNA,使細胞產出病毒蛋白質片段,進而呈現給其他白血球並活化整個免疫系統。【註7】
mRNA可將特定蛋白質的製造指示送至細胞核糖體(ribosomes)進行生產。mRNA 疫苗會將能製造新冠病毒棘狀蛋白的 mRNA 送至人體內,並不斷製造棘狀蛋白,藉此驅動免疫系統攻擊與記憶此類病毒蛋白,增加人體對新冠病毒的免疫力,最終 mRNA 將被細胞捨棄。
值得注意的是,由於 mRNA 疫苗並無攜帶所有能製造新冠病毒的核酸(nucleic acid),且不會進入人體細胞核,所以施打疫苗無法使人感染新冠病毒。
Pfizer、BioNTech 研發的 BNT162b2 是美國第 1 個取得 EUA 的 mRNA 疫苗,施打對象除成年人,還包含 16 歲以上非成年人。且相比 Moderna 製造的 mRNA-1273 疫苗,患者施打第 2 劑 BNT162b2 的副作用較輕微。
Moderna 也不遑多讓,mRNA-1273 於 2020 年 12 月中取得 EUA,且具備在 -20°C 儲存超過 30 天的優勢。在臨床試驗中,使用 mRNA-1273 的 196 位受試者皆無演變成重度 COVID-19,相較安慰劑組中卻有 30 人最終被標為重度 COVID-19 患者。【註8】
為了觸發免疫反應,許多疫苗會將一種減弱或滅活的細菌注入我們體內。mRNA疫苗並非如此。相反,該疫苗教會我們的細胞如何製造出一種蛋白質,甚至一種蛋白質片段,從而觸發我們體內的免疫反應。如果真正的病毒進入我們的身體,這種產生抗體的免疫反應可以保護我們免受感染。【註9】
【Reference】
▶DNA的英文全名是Deoxyribonucleic acid,中文翻譯為【去氧核糖核酸】
▶RNA 的英文全名是 Ribonucleic acid,中文翻譯為【核糖核酸】。
1.來源
➤➤資料
∎【註1】
Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020 Dec 30:NEJMoa2035389. doi: 10.1056/NEJMoa2035389. Epub ahead of print. PMID: 33378609; PMCID: PMC7787219.
https://www.nejm.org/doi/full/10.1056/NEJMoa2035389
Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10. PMID: 33301246; PMCID: PMC7745181.
https://www.nejm.org/doi/full/10.1056/NEJMoa2034577
∎【註2】
Xiaoman Wei, Xiang Li, Jie Cui, Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China, National Science Review, Volume 7, Issue 2, February 2020, Pages 239–242, https://doi.org/10.1093/nsr/nwaa009
∎【註3】
▶蘇一峰 醫師:https://www.facebook.com/bsbipoke
▶中時新聞網 「mRNA疫苗臨床試驗95%有效 醫:哪國搶到就能結束比賽」:
https://www.chinatimes.com/realtimenews/20210104004141-260405?chdtv
∎【註4】
( 台大醫院 National Taiwan University Hospital-基因分子診斷實驗室)「DNA、RNA 以及蛋白質」:https://www.ntuh.gov.tw/gene-lab-mollab/Fpage.action?muid=4034&fid=3852
∎【註5】
《科學人》粉絲團 - 「新冠病毒知多少?」:https://sa.ylib.com/MagArticle.aspx?id=4665
∎【註6】
(報導者 The Reporter)【肺炎疫情關鍵問答】科學解惑 - 10個「為什麼」,看懂COVID-19病毒特性與防疫策略:https://www.twreporter.org/a/covid-19-ten-facts-ver-2
∎【註7】
科學月刊 Science Monthly - 「讓免疫系統再次偉大!mRNA疫苗會是COVID-19的救世主嗎?」:https://www.scimonth.com.tw/tw/article/show.aspx?num=4823&page=1
∎【註8】
GeneOnline 基因線上 「4 大 COVID-19 疫苗大解密!」 :https://geneonline.news/index.php/2021/01/04/4-covid-vaccine/
∎【註9】
(CDC)了解mRNA COVID-19疫苗
https://chinese.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
➤➤照片
∎【註4】:
圖1、分子生物學中心法則
∎【註7】:
圖2:mRNA 疫苗設計原理
圖3:mRNA 疫苗設計流程圖
2. 【國衛院論壇出版品 免費閱覽】
▶國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽:
https://forum.nhri.org.tw/publications/
3. 【國衛院論壇學術活動】
▶https://forum.nhri.org.tw/events/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #疾病管制署 #COVID-19 #mRNA疫苗 #新英格蘭醫學醫學期刊 #NEJM
衛生福利部 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
尿嘧啶 在 羅珮琳醫師 Facebook 的精選貼文
今天一位因為妊娠搔癢性蕁痲疹丘疹的孕媽媽回來複疹,服藥三週後身上疹子改善,臉部腫痛也沒了,皮膚癢感只剩一點點,已經能夠一覺睡到天亮了。但是媽咪問我幾個令我傻眼的問題,因為有人跟她說:為什麼要吃中藥?中藥的安全性又沒有被研究?
那我要來好好回答了,中藥的安全性沒有被研究??只是你不知道而已。中藥的成份是可以被現代藥理分析的,有毒性的成分也都能夠分析出,但是因為中藥是混合物,裡面有太多太多成分,所以我們中醫並不會特別強調單一成分。以當歸為例:
【現代藥理】
當歸含有揮發油,油中主要成分為藁本內酯、正丁烯夫內酯、當歸酮、香荊芥酚等。另含水溶性成分阿魏酸、丁二酸、菸酸、尿嘧啶、腺嘌呤、豆甾醇-D─葡萄糖甙、香莢蘭酸、鉤吻螢光素等。尚含當歸多糖、多種氨基酸、維生素A、B12、E、及多種為人體必需的多種元素等。
孕婦用藥最注意的是會不會有致畸胎性以及流產,西藥對於藥物是有分級的。中藥當然也有,有孕婦忌用、孕婦慎用。對於孕婦的處方藥物,一定是會全方面的考量。
媽咪還問了另外一個問題:我吃這些退火的中藥寶寶體質會不會變寒??親愛的媽咪,妳現在全身熱烘烘的,如果一直不處理,難道就不怕會影響寶寶嗎?
好吧!我知道孕媽咪都會想太多,想當年我懷孕時也是超級不理性,差點想穿鉛衣去坐飛機了。
不要再說中藥沒有安全研究了,難道我們中醫師唸大學的時候都在打坐跟煉丹嗎?!
尿嘧啶 在 尿嘧啶(Uracil) | 科學Online - 國立臺灣大學 的相關結果
尿嘧啶 (如圖1)是常見且天然存在的嘧啶衍生物。最早發現於1900年,由酵母核素(nuclein,即為核酸)水解分離而得,可存在於牛的胸腺和脾臟、腓魚的精液和 ... ... <看更多>
尿嘧啶 在 尿嘧啶_百度百科 的相關結果
尿嘧啶 (Uracil) ,是一種有機化合物,分子式為C4H4N2O2,分子量為112.087,細灰白色結晶粉末。尿嘧啶是RNA特有的鹼基,相當於DNA中的胸腺嘧啶(T)。 ... <看更多>
尿嘧啶 在 脲嘧啶- 維基百科,自由的百科全書 的相關結果
脲嘧啶(Uracil /ˈjʊərəsɪl/,簡寫U),是組成RNA的四種鹼基之一。在DNA的轉錄時取代DNA 中的胸腺嘧啶(T),與腺嘌呤配對。將脲嘧啶甲基化即得胸腺嘧啶(即5-甲基脲 ... ... <看更多>