本週的播放清單如下
週一:向量函數的積分
週二:曲面分析與面積分
週三:旋轉體分析
週四:三變數函數的積分
週五:向量函數的極限、連續與微分
以下是可以許願的清單
記得只能許願某個重點,不能直接許一整章
若是有人許過你想許的主題
可到 YT 許願
youtube.com/post/UgxOAnbloHj78w6vjI14AaABCQ
若是想買完整課程請到
👉 https://www.changhsumath.cc
【積分(前篇)】
重點一 定積分直觀觀念
重點二 奇偶函數的積分
重點三 定積分正式定義
重點四 積分運算性質
重點五 微積分基本定理 I - 先微再積型
重點六 不定積分與反導數
重點七 雙曲函數
重點八 微分表II
重點九 四大積分基本方法之一:變數變換法
重點十 四大積分基本方法之二:三角置換法
重點十一 四大積分基本方法之三:分部積分法
重點十二 積分表
重點十三 四大積分基本方法之四:部分分式法
【積分(後篇)】
重點一 進階積分技巧:高次倍角三角函數積分
重點二 特殊積分形式之其一:含絕對值的積分
重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
重點四 微積分基本定理 II - 先積再微型
重點五 旋轉體積分
【數列與級數】
重點一 數列與數列的極限
重點二 數列極限的運算性質
重點三 數列連續化求極限法
重點四 夾擠定理
重點五 單調數列與有界數列
重點六 級數
重點七 級數的運算性質
重點八 級數審斂法一:等比級數
重點九 級數審斂法二:p-級數
重點十 級數審斂法三:比較審斂法
重點十一 級數審斂法四:極限比較審斂法
重點十二 級數審斂法五:比值審斂法
重點十三 級數審斂法六:根值審斂法
重點十四 級數審斂法七:積分審斂法
重點十五 級數審斂法八:交錯級數審斂法
重點十六 絕對收斂和條件收斂
重點十七 冪級數
重點十八 冪級數的運算
重點十九 泰勒級數與泰勒定理
【多變數函數的微積分】
重點一 多變數函數
重點二 二變數函數的極限
重點三 二變數函數極限特殊求法
重點四 二變數函數極限運算定理
重點五 二變數函數的連續
重點六 二變數函數的偏微分
重點七 高階偏微分
重點八 偏微分運算律
重點九 多變數函數的微分量 (全微分)
重點十 方向導數
重點十一 梯度與等高線
重點十二 等值面與切平面
重點十三 相對極值、絕對極值和鞍點
重點十四 拉格朗日乘數法
重點十五 二變數函數的積分:二重積分
重點十六 二重積分的極座標轉換
重點十七 二重積分的應用
重點十八 三變數函數的積分:三重積分
重點十九 柱座標與球座標
重點二十 三重積分的應用
【向量微積分】
重點一 向量函數的定義
重點二 向量函數的極限、連續與微分
重點三 向量函數的積分
重點四 曲線分析
重點五 旋轉體分析
重點六 向量場與保守場
重點七 線積分
重點八 微積分基本定理 for 線積分
重點九 格林定理
重點十 梯度、旋度、散度
重點十一 曲面
重點十二 曲面分析與面積分
重點十三 散度定理
重點十四 史托克定理
以上就是能許願的清單
統計到本周六晚上 10 點
結果會在本周日晚上公告
然後下周一至五晚上 6 點在我頻道限時首播
同時也有21部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本習題練習驗證某個含根號的函數有極值 【勘誤】 無,有任何錯誤歡迎留言告知 【習題】 檔案:https://drive.google.com/file/d/1-p3_HoViBhKPOQ15-jVXsjIhymDZqawZ/view 簡答:可在張旭的生存用微積分社團下載 社團: htt...
「連續函數條件」的推薦目錄:
- 關於連續函數條件 在 數學老師張旭 Facebook 的最讚貼文
- 關於連續函數條件 在 WorkFace Taipei Facebook 的最佳貼文
- 關於連續函數條件 在 數學老師張旭 Facebook 的最佳貼文
- 關於連續函數條件 在 數學老師張旭 Youtube 的精選貼文
- 關於連續函數條件 在 數學老師張旭 Youtube 的最佳貼文
- 關於連續函數條件 在 數學老師張旭 Youtube 的最讚貼文
- 關於連續函數條件 在 Re: [解題] 微積分連續函數的意義? - 看板tutor 的評價
- 關於連續函數條件 在 【微積分/Calculus】函數的連續性 - YouTube 的評價
- 關於連續函數條件 在 連續函數的判斷- YouTube 的評價
- 關於連續函數條件 在 連續函數可微分在PTT/Dcard完整相關資訊 的評價
- 關於連續函數條件 在 連續函數可微分在PTT/Dcard完整相關資訊 的評價
- 關於連續函數條件 在 浅谈连续函数 的評價
連續函數條件 在 WorkFace Taipei Facebook 的最佳貼文
【台北 | 07/15 #創變夜Live】感受到創造的巨大魔力嗎?
▶️區塊鏈與數位資產的跨域碰撞
🎤區塊科技 執行長 黃敬博 Po Huang
今晚的 #WorkFace 主題例會中,我們邀請 區塊科技 的 黃敬博 執行長,跟大家分享如何藉由「創造」不同以往的創新心態,在區塊鏈與數位資產領域,相互創造出的全新碰撞?
🌟讓我們一起回顧今晚的精彩時刻!
想想看你早上睡過頭的照片被偷拍,並且散佈到各處時,就算你即時要修圖美化一下,在區塊鏈上這張留存的圖片也無法被更改,這就是區塊鏈存證的簡單比喻!
「而在了解區塊鏈技術前有兩個基礎概念要先認識。」Po 說到,那就是數位指紋與智能合約。
所謂數位指紋,指的是把一堆資料使用數學函數計算之後的結果。資料中只要有一個byte不同算出來的「結果」就會不一樣,該「結果」就可以視為是那「一堆資料」的「數位指紋」,是用來確認檔案的身份的實際應用方案。
而智能合約則是在區塊鏈中的執行程式碼,只要滿足特定條件就能觸法智能合約的自動執行,提供驗證及執行合約內所訂立的條件;利用區塊鏈的特性可以維持他不易串改的特性,讓程式碼保持公正透明公開。
✅如何「創造」區塊鏈與數位資產領域跨域應用?
數位證據常見的疑慮,是容易被串改或不小心被刪除,要怎麼確保數位資料原始性,就仰賴數位指紋與區塊鏈的應用,以共有鏈提供的金鑰,與私有鏈人臉指紋辨識等技術,讓區塊鏈數位證據存證的系統可以做到保證數位檔案原始性、提升數位證據有效性與拓展數位資料蒐集型態的應用!
而區塊科技主要專業領域,是提供檢警調單位現場蒐證應用,包含手機存證與電腦存證針對執發現場與資安蒐證的工具支援;在toC的層面則是應用發展在企業級的存證與簽約服務、智慧財產權的驗證、數位存證信函等貼近民生的日常數位存證需要。
❓在疫情中,區塊鏈數位存證能為生活帶來什麼改變?
拿存證信函為例子,現在不能出門的時刻,如果需要這樣的服務該怎麼處理呢?
區塊科技以區塊鏈數位存證技術,提供24小時無需實體的第三方公正存證系統,就可以化解疫情間不便出門的窘迫情境,同樣出發扁的還有公司端的數位合約簽名存證,過程中甚至會紀錄收雙方通知的時間,與同步提供合約電子檔案、合約歷程紀錄與以太坊交易頁面,方便法律上舉證有效進行!
🗯連續創業者的領悟和心得
「我想任何的創業都是要找到志同道合的團隊,並不是說需要多優秀,更多的是整體團隊合作的協調性!」po分享到,找到對人選,絕對是創業成功的必要條件!
在創業項目上,則是需要關注在解決問題的可能性,像是數位存證就是關注在未來的趨勢預備跑道中,不過雖然解決議題具有前瞻性觀點,但當下的公司存留其實更加仰賴推廣宣傳的力道,因此區塊科技在這方面積極的與政府單位合作,推動數位資產的留存與培養其使用習慣。
在創業後,更要不厭其煩的符合法規與政府要求,同時規劃短中長期的規劃,力求貫徹執行才不會使計畫落為空談;因應局勢調整,則是這個時代不論大小公司都要面對的議題,當中能夠使你的團隊脫穎而出的即是有效的溝通模式,最後建立該領域中的指標性地位,更是後期能否快速發展的重要里程碑!
#創造 #週四主題例會 #WorkFaceTaipei #創變者社群
連續函數條件 在 數學老師張旭 Facebook 的最佳貼文
不知不覺許願池計劃已經進到第 7 週了
本週的播放清單如下
週一:二重積分的極座標轉換
週二:冪級數
週三:曲線分析
週四:不定積分與反導函數
週五:向量函數的定義
以下是可以許願的清單
記得只能許願某個重點,不能直接許一整章
若是有人許過你想許的主題
可以按讚也可以再留一次言
若是想買完整課程請到
👉 https://www.changhsumath.cc
【積分(前篇)】
重點一 定積分直觀觀念
重點二 奇偶函數的積分
重點三 定積分正式定義
重點四 積分運算性質
重點五 微積分基本定理 I - 先微再積型
重點六 不定積分與反導數
重點七 雙曲函數
重點八 微分表II
重點九 四大積分基本方法之一:變數變換法
重點十 四大積分基本方法之二:三角置換法
重點十一 四大積分基本方法之三:分部積分法
重點十二 積分表
重點十三 四大積分基本方法之四:部分分式法
【積分(後篇)】
重點一 進階積分技巧:高次倍角三角函數積分
重點二 特殊積分形式之其一:含絕對值的積分
重點三 特殊積分形式之其二:含無窮的積分 (瑕積分)
重點四 微積分基本定理 II - 先積再微型
重點五 旋轉體積分
【數列與級數】
重點一 數列與數列的極限
重點二 數列極限的運算性質
重點三 數列連續化求極限法
重點四 夾擠定理
重點五 單調數列與有界數列
重點六 級數
重點七 級數的運算性質
重點八 級數審斂法一:等比級數
重點九 級數審斂法二:p-級數
重點十 級數審斂法三:比較審斂法
重點十一 級數審斂法四:極限比較審斂法
重點十二 級數審斂法五:比值審斂法
重點十三 級數審斂法六:根值審斂法
重點十四 級數審斂法七:積分審斂法
重點十五 級數審斂法八:交錯級數審斂法
重點十六 絕對收斂和條件收斂
重點十七 冪級數
重點十八 冪級數的運算
重點十九 泰勒級數與泰勒定理
【多變數函數的微積分】
重點一 多變數函數
重點二 二變數函數的極限
重點三 二變數函數極限特殊求法
重點四 二變數函數極限運算定理
重點五 二變數函數的連續
重點六 二變數函數的偏微分
重點七 高階偏微分
重點八 偏微分運算律
重點九 多變數函數的微分量 (全微分)
重點十 方向導數
重點十一 梯度與等高線
重點十二 等值面與切平面
重點十三 相對極值、絕對極值和鞍點
重點十四 拉格朗日乘數法
重點十五 二變數函數的積分:二重積分
重點十六 二重積分的極座標轉換
重點十七 二重積分的應用
重點十八 三變數函數的積分:三重積分
重點十九 柱座標與球座標
重點二十 三重積分的應用
【向量微積分】
重點一 向量函數的定義
重點二 向量函數的極限、連續與微分
重點三 向量函數的積分
重點四 曲線分析
重點五 旋轉體分析
重點六 向量場與保守場
重點七 線積分
重點八 微積分基本定理 for 線積分
重點九 格林定理
重點十 梯度、旋度、散度
重點十一 曲面
重點十二 曲面分析與面積分
重點十三 散度定理
重點十四 史托克定理
以上就是能許願的清單
想看我影片的同學們請在這篇下面許願和投票
統計到本周六晚上 10 點
結果會在本周日晚上公告
然後下周一至五晚上 6 點在我頻道限時首播
連續函數條件 在 數學老師張旭 Youtube 的精選貼文
【摘要】
本習題練習驗證某個含根號的函數有極值
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
檔案:https://drive.google.com/file/d/1-p3_HoViBhKPOQ15-jVXsjIhymDZqawZ/view
簡答:可在張旭的生存用微積分社團下載
社團: https://www.facebook.com/groups/changhsumath666.calculus
【講義】
請到張旭老師臉書粉專評論區留下你的評論,然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結 👉 https://www.facebook.com/changhsu.math/reviews
【附註】
無
【丈哥的話】
嗨!大家好,我是丈哥
重點五大家可能比較陌生
雖然是從驗證條件開始
然後可以直接套用定理結束
裡面還是有些東西是要熟悉的
如果你喜歡我們的教學影片
請幫我分享給更多正在學微積分的同學們,謝謝~
【學習地圖】
【連續篇重點五習題】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgIGFlngKmMk3gxmWPKiKCg)
習題 5-2 (https://youtu.be/Od8l4gw9HnI)
習題 5-4 (https://youtu.be/27gyzbSjyrs)
習題 5-6 (https://youtu.be/ER8ixfaEc2Y)
習題 5-8 (https://youtu.be/KFWSiDDnd6M)
習題 5-10 👈 目前在這裡
【版權宣告】
本影片版權為張旭 (張舜為) 老師與丈哥 (王重臻) 共同所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
Twitch:https://www.twitch.tv/changhsumath
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #連續篇習題 #丈哥講解
連續函數條件 在 數學老師張旭 Youtube 的最佳貼文
【摘要】
本習題練習計算一個極大容積問題,雖然它本來應該放在高中問題、或是微分判別法的章節,但放在這邊一樣是呈現連續函數必有極值,只是這個極值不那麼好找 (若不用算幾不等式) 的概念。一起來體驗看看吧
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
檔案:https://drive.google.com/file/d/1-p3_HoViBhKPOQ15-jVXsjIhymDZqawZ/view
簡答:可在張旭的生存用微積分社團下載
社團: https://www.facebook.com/groups/changhsumath666.calculus
【講義】
請到張旭老師臉書粉專評論區留下你的評論,然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結 👉 https://www.facebook.com/changhsu.math/reviews
【附註】
無
【丈哥的話】
嗨!大家好,我是丈哥
重點五大家可能比較陌生
雖然是從驗證條件開始
然後可以直接套用定理結束
裡面還是有些東西是要熟悉的
如果你喜歡我們的教學影片
請幫我分享給更多正在學微積分的同學們,謝謝~
【學習地圖】
【連續篇重點五習題】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgIGFlngKmMk3gxmWPKiKCg)
習題 5-2 (https://youtu.be/Od8l4gw9HnI)
習題 5-4 (https://youtu.be/27gyzbSjyrs)
習題 5-6 (https://youtu.be/ER8ixfaEc2Y)
習題 5-8 👈 目前在這裡
習題 5-10 (https://youtu.be/g9UTzvIjSSw)
【版權宣告】
本影片版權為張旭 (張舜為) 老師與丈哥 (王重臻) 共同所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
Twitch:https://www.twitch.tv/changhsumath
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #連續篇習題 #丈哥講解
連續函數條件 在 數學老師張旭 Youtube 的最讚貼文
【摘要】
本習題練習計算某一種類型的分式函數存在極小值
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
檔案:https://drive.google.com/file/d/1-p3_HoViBhKPOQ15-jVXsjIhymDZqawZ/view
簡答:可在張旭的生存用微積分社團下載
社團: https://www.facebook.com/groups/changhsumath666.calculus
【講義】
請到張旭老師臉書粉專評論區留下你的評論,然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結 👉 https://www.facebook.com/changhsu.math/reviews
【附註】
無
【丈哥的話】
嗨!大家好,我是丈哥
重點五大家可能比較陌生
雖然是從驗證條件開始
然後可以直接套用定理結束
裡面還是有些東西是要熟悉的
如果你喜歡我們的教學影片
請幫我分享給更多正在學微積分的同學們,謝謝~
【學習地圖】
【連續篇重點五習題】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgIGFlngKmMk3gxmWPKiKCg)
習題 5-2 (https://youtu.be/Od8l4gw9HnI)
習題 5-4 (https://youtu.be/27gyzbSjyrs)
習題 5-6 👈 目前在這裡
習題 5-8 (https://youtu.be/KFWSiDDnd6M)
習題 5-10 (https://youtu.be/g9UTzvIjSSw)
【版權宣告】
本影片版權為張旭 (張舜為) 老師與丈哥 (王重臻) 共同所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
Twitch:https://www.twitch.tv/changhsumath
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #連續篇習題 #丈哥講解
連續函數條件 在 【微積分/Calculus】函數的連續性 - YouTube 的推薦與評價
『簡單輕鬆』的方式學習微積分0:14 : 介紹三種 函數 圖形是否 連續 ?2:48 : 總結三個 連續 的 條件 3:18 : 例題1(檢查 函數 是否 連續 )5:06 : 例題2(判斷 函數 是否 ... ... <看更多>
連續函數條件 在 連續函數的判斷- YouTube 的推薦與評價
課程簡介:" 連續函數 的判斷"由中華科技大學李柏堅老師講授,適合剛進入大學新鮮人來觀看,內容重要又簡潔,例題簡單又好記,相信同學看完之後, ... ... <看更多>
連續函數條件 在 Re: [解題] 微積分連續函數的意義? - 看板tutor 的推薦與評價
※ 引述《roderick6887 (費洛蒙)》之銘言:
: 1.年級:大一
: 2.科目:微積分
: 3.章節:第一章 函數的極限與連續
: 4.題目:左極限=右極限,極限值存在;極限值=函數值,代表函數連續;
: 可微代表連續,連續不一定可微
: 題目都要設法證明函數連不連續,到底意義為何?
一個函數連不連續是一個重要的性質
連續也是一個很強的條件
一但一個函數是連續函數,它就有很多好的性質可用
這裡舉一些基本,常見的簡單性質:
連續函數相加、減、乘、除(分母不為0)、合成依然連續函數
中間值定理(高中階段的勘根定理,即為一特例)
可積分性
極值定理:在compact set上極植存在
在compact set上自動升極成均勻連續
把compact set送到compact set
把connected set送到connected set
把閉集拉回來變閉集
把開集拉回來變開集
或者,更進一步地,連續函數可以找到多項函數逼近之(應用上極重要)
: 我如果知道此函數連續?然後呢?有無任何(物理)意義或應用?
: 5.想法: 課本只寫函數在X0點處連續與不連續,是函數在一個點附近的特性.
: 但我覺得也許用在工程上(專業科目)可能有物理意義,如果有意義為何?
時間就是連續函數
所以我們常作時間與距離、時間與速度、時間與加速度的圖形
其中並把時間放在橫軸(x軸的角色)
進一步去處理這些具物理意義的函數
又或者說,很多大自然現象背後的函數是連續函數:
例如:物體的運動(拋物線或直線運動)
或是指數與對數函數
又或者連續的週期函數與sin與cos的關係
在了解了連續函數的各種性質之後,也方便進一步去研究這些大自然或科學現象
至於連續是如何定義的呢?
先定義f(x)在a點連續:
對所有的ε>0,存在δ>0 (與a點和δ有關)
使得,當d(x,a)<δ時,d(f(x),f(a))<ε
然後,再定義f(x)在整個區間I(或空間上)連續:
對所有a屬於I,f(a)皆連續
至於你說的"左極限=右極限,極限值存在;極限值=函數值,代表函數連續"
基本上,就是一種我們對函數在單點連續的直觀上的等價想法(高中把它當定義)
只要將f(x)在a點連續的定義與極限相關的定義作個比較
不難得到上面等價的直觀性質
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.122.174.173
... <看更多>